首页 时代召唤 时事动态 科学历史 科学研究 科学论坛 科学足迹 科学使命 加盟单位 会员注册 English
分子论坛
生物论坛
宇宙论坛
 


“我们现在很容易说宇宙是无垠的,人的思想也是无边的,因为我们看不到边,思不透许多事,而且人的生命是有限的”  --哲人胡言

揭开“暗物质”和“暗能量”的神秘面纱

 

        宇宙的起源和进化是物理学研究的最基本问题之一。建立在广义相对论和宇宙学原理(即在宇宙大尺度上,物质的分布是高度均匀各向同性的)之上的大爆炸宇宙模型告诉我们,大约137亿年前,大爆炸发生的那一刻,宇宙处于一个极致密、极高温的状态,形成了空间和时间,宇宙随之诞生,并经过膨胀、冷却演化至今。在这个过程中,宇宙经历了原初轻元素合成、光子退耦和中性原子形成、第一代恒星形成等几个重要的时期,星系、地球、空气、水和生命便在这个不断膨胀的时空里逐渐形成。

        二十世纪二十年代,天文学家哈勃从星系光谱的红移(red shift,一个天体的光谱向长波(红)端的位移)观测中发现宇宙中所有的星系都在彼此远离退行;距离越远,退行速度越大,二者成正比,这个比例系数被称为哈勃常数,这个规律叫哈勃定律。在此基础上,产生"膨胀宇宙"的概念和"大爆炸宇宙模型"。二十世纪,大量的天文观测和天体物理研究结果都证实这个模型。

        根据威尔金森微波背景各向异性探测器(WMAP)和斯隆数字巡天(SDSS)天文观测以及对宇宙学参数的精确测量,进一步强有力地支持了这一模型。这在人类探索宇宙奥秘和物质基本结构的道路上无疑是一个光辉的成就。WMAP的结果告诉我们,宇宙中普通物质只占4%,23%的物质为暗物质,73%是暗能量, SDSS 也给出类似的结果。从物质基本结构的观点出发,普通的物质,如树木、桌子以及我们人类本身,是由分子、原子构成。然而分子、原子不是最基本的,目前已知的最基本的粒子是由粒子物理标准模型所描述的夸克和轻子以及传递相互作用的粒子(如光子,胶子等)。北京正负电子对撞机就是系统地研究其中的粲(charm)夸克和陶(tau)轻子。

        那么,什么是暗物质呢?暗物质(dark matter)是指由天文观测推断存在于宇宙中的不发光物质,由不发光天体、晕物质以及非重子中性粒子组成,但它有显著的引力效应。比如,对于一个星系考虑距其中心远处的天体的旋转速度,如果物质存在的区域和光存在的区域是一样的话,由牛顿引力定律可知,距离中心越远,速度应该越小。可是天文观测事实不是这样的,这就说明当中有看不见的暗物质。目前各种天文观测和结构形成理论强有力地表明宇宙中有大约三分之一是暗物质。中微子是一种暗物质粒子,但WMAP和SDSS的结果说明,它的质量应当非常小,在暗物质中只能占微小的比例,绝大部分应是所谓的中性的弱作用重粒子。它们究竟是什么目前还不清楚。理论物理学家猜测,它们可能是超对称理论中的最轻的超对称粒子,是稳定的,在宇宙演化过程中像微波背景光子一样被遗留下来。目前世界各国科学家,例如中意科学家合作组DAMA实验,丁肇中先生领导的AMS实验,正在进行着各种加速器和非加速器实验,试图找到这种暗物质粒子。

(图1:膨胀的宇宙,此图显示了自宇宙14亿年前诞生的扩张速度的变化。越浅的曲线,更快的扩张速度。约7.5亿年前出现明显的曲线变化,宇宙中飞行的物体开始以更快的速度分开。)

(图2:暗物质电脑模拟图。)

        那么,什么又是暗能量呢?宇宙学中,暗能量(dark energy)是某些人的猜想,指一种充溢空间的、具有负压强的能量。它是一种不可见的、能推动宇宙运动的能量,宇宙中所有的恒星和行星的运动皆是由暗能量来推动的。按照相对论,这种负压强在长距离类似于一种反引力。如今,这个猜想是解释宇宙加速膨胀和宇宙中失落物质等问题的一个最流行的方案。暗能量主要有两种模型:宇宙学常数(即一种均匀充满空间的常能量密度)和quintessence(即一个能量密度随时空变化的动力学场)。区分这两种可能需要对宇宙膨胀的高精度测量和对膨胀速度随时间变化更深入的理解。因为宇宙膨胀速度由宇宙学物态方程来描写,所以测量暗物质的物态方程是当今观测宇宙学的最主要问题之一。

  宇宙尽管在极大的尺度上表现出均匀和各向同性,但是在小一些的尺度上则存在着恒星、星系、星系团以及星系长城。而在大尺度上能够促使物质运动的力就只有引力了。但是均匀分布的物质不会产生引力,因此今天所有的宇宙结构必然源自于宇宙极早期物质分布的微小涨落,而这些涨落会在宇宙微波背景(CMB)中留下痕迹。然而普通物质不可能通过其自身的涨落形成实质上的结构而又不在宇宙微波背景辐射中留下痕迹,因为那时普通物质还没有从辐射中脱耦出来。

        暗能量是近年宇宙学研究的一个里程碑性的重大成果。支持暗能量的主要证据有两个。一是对遥远的超新星所进行的大量观测表明,宇宙在加速膨胀,星系膨胀的速度不象哈勃定律描述的那样,是恒定的,而是在不断加速。按照爱因斯坦引力场方程,加速膨胀的现象推论出宇宙中存在着压强为负的"暗能量"。另一个证据来自于近年对微波背景辐射的研究精确地测量出宇宙中物质的总密度。但是,我们知道所有的普通物质与暗物质加起来大约只占其1/3左右,所以仍有约2/3的短缺。这一短缺的物质称为暗能量,其基本特征是具有负压,在宇宙空间中几乎均匀分布或完全不结团。最近WMAP数据显示,暗能量在宇宙中占总物质的73%。值得注意的是,对于通常的能量(辐射)、重子和冷暗物质,压强都是非负的,所以必定存在着一种未知的负压物质主导今天的宇宙。

        然而现在物理学的基本理论还无法解释观测到的这一暗能量。暗能量是二十一世纪物理学面临的最大的挑战,暗物质和暗能量被称为本世纪天文学的“两朵乌云”。物理学对暗能量这种新类型物质的探索才刚刚开始。众说纷纭,但仅仅是一些猜测和设想,远没有形成一个基本合理的解释。科学家正在计划发射新的探测卫星,对于宇宙大尺度空间进行更多更精确更系统的观测,进一步研究宇宙加速膨胀的规律,确定暗能量的形式和物理特征,不同的暗能量形式将导致非常不同的宇宙膨胀的规律。解决这一问题需要新的理论,这样的理论一旦被找到,很可能是人们长期追求的包括引力在内的各种相互作用统一的量子理论。

 

暗物质存在的证据

 

        上个世纪30年代,诺贝尔奖获得者密立根,曾致力于将位于美国加利福尼亚州南部城市帕萨迪纳的加州理工学院,建成世界一流的研究机构。他聘用的第一位从事天体物理研究的学者,是瑞士籍科学家弗里兹·兹威基。1934年,兹威基研究了星系团内星系的运动,首次提出暗物质存在的可能性。星系在宇宙中有一种成团倾向,彼此之间有引力联系,由其构成的体系称为星系群;若受引力束缚在一起的星系群不止几十个,而是几百个、上千个、几千个,那么就称为星系团。星系团中成百上千的星系,因被自身引力束缚,运动速度与引力必须达成平衡才不致出轨,而且引力越强,运动速度越快。然而,兹威基发现,星系团内星系远远不足以产生如此大的引力,一定还存在人类看不见的其他物质,他称之为暗物质。

        目前,人们只能通过引力产生的效应得知宇宙中有大量暗物质存在。暗物质存在的最早证据来源于对球状星系旋转速度的观测。现代天文学通过引力透镜、宇宙中大尺度结构形成、微波背景辐射等研究表明:我们目前所认知的部分大概只占宇宙的4%,暗物质占了宇宙的23%,还有73%是一种导致宇宙加速膨胀的暗能量。1957年诺贝尔奖的获得者李政道更是认为暗物质和暗能量占了宇宙质量的99%。暗物质无法直接观测得到,但它却能干扰星体发出的光波或引力,其存在能被明显地感受到。科学家曾对暗物质的特性提出了多种假设,但直到目前还没有得到充分的证明。

        1990年,美国航天飞机将哈勃太空望远镜送上太空。根据哈勃望远镜获取的观测资料,人们计算出宇宙年龄大约为120亿年~140亿年;然而天文学家已知有些古老的球状星团,它们的年龄约为140亿年~160亿年左右。这便显现出一种矛盾,即宇宙年龄居然比某些球状星团年龄小。后来,一个意外发现震动了科学界。天文学家称为Ia型的超新星,因其爆炸时发出光的亮度是固定的,故可作为一个标准烛光。知道了标准烛光,再用望远镜观测其亮度,就可确定其距离。十几年前,由利斯等人和帕尔莫特等人组成的两个独立天文研究小组几乎同时宣布:利用Ia型超新星作标准烛光,他们发现宇宙正在加速膨胀。此前,几乎所有人都认为宇宙膨胀一定是减速的,因为万有引力对膨胀只起减速作用。宇宙加速膨胀这一发现表明:宇宙年龄比人们原来想象的要长,而且其中要么存在斥力,要么存在科学家称之为暗能量的负压强。

        2006年,美国天文学家利用钱德拉X射线望远镜对星系团1E 0657-56进行观测,无意间观测到星系碰撞的过程,星系团碰撞威力之猛,使得黑暗物质与正常物质分开,因此发现了暗物质存在的直接证据。Marusa Bradac来自位于美国能源部斯坦福直线加速器中心(SLAC)的Kavli粒子天体物理和宇宙学研究所(KIPAC: Kavli Institute for Particle Astrophysics and Cosmology),他和同事们对一个离我们三十亿光年远的星系团(Galaxy Cluster)进行了这次划时代的观测。这项研究是基于对子弹星系团(Bullet Cluster)的观测。子弹星系团是一种不同寻常的宇宙结构,它实际上是两团星系迎面相遇并彼此穿过而形成的。由于两个星系团以每小时一亿英里的速度撞到一起,它们内部包含的发光物质由于相互之间存在引力之外的相互作用力,相互挤压而出现减速。但是两星系团中的暗物质由于相互之间没有这种排斥力,它们并不减速,从而直接穿过。这样就导致暗物质跑到发光物质的前面去了,这样每个星系团就分成了两部分:暗物质在前,发光物质在后。研究者们比较了发光物质的X射线图和对星系团总质量的测量结果,从而探测到了暗物质和发光物质的分离。他们观测了星系团所导致的引力透镜效应(Gravitational Lensing Effect)——在这种现象中,从星系团后部星体发出的光由于受到星系团引力的作用而发生偏折,星系团的质量越大偏折就越厉害,反之光线偏折得越大就说明星系团的质量越大——从而获得了星系团的总质量。通过使用哈勃望远镜(Hubble Space Telescope)、麦哲伦望远镜(Magellan Telescope)以及甚大望远镜(Very Large Telescope)对光线偏折的测量,这个小组就能够还原出在子弹星系团中质量的分布情况。然后他们将之与通过Chandra X射线望远镜拍得的发光物质X射线图进行了比较,结果发现了四个独立的物质团:其中比较大的两个由暗物质组成,它们从碰撞点加速飞离;另外较小的两个由发光物质组成,它们在碰撞点附近缓慢地移动。星系团在空间上分离成两团证明了两种物质的存在,而它们表现出的巨大差别则显示了暗物质奇异的性质。

(图3:子弹星系团中的暗物质已经和发光物质分开了。)

(图4:图中蓝色的是暗物质,红色的发光物质,两者已经分开了。)

(图5:2007年1月,科学家宣布首次绘制出宇宙暗物质三维数字地图。)

        低温暗物质搜寻项目(CDMS),旨在使用探测器探测粒子间的互动,找到暗物质粒子引起的运动。2009年,美国科学家在位于加利福尼亚大学校园的隧道里的实验室检测到了两种可能来自于暗物质粒子的信号。但他们同时表示,这些信号与暗物质粒子的相似度不高。他们在明尼苏达州的Souden煤矿地下约714米处安装更高级的实验室设备,以进行二期低温暗物质搜寻项目(CDMSⅡ)。暗物质现象会被进入地球的宇宙射线干扰,要减少宇宙射线μ介子粒子的背景信号影响,唯一的办法是移到地底深处,这样才有把握确认暗物质的构成。

     2009年12月21日,科学家在Souden煤矿中发现暗物质,这是迄今为止最有力的发现暗物质证据。其他实验也在探寻来自暗物质的信号,比如地下氙(Lux)实验。美国费米太空望远镜则试图定位暗物质,寻找其在空间湮没(暗物质发生碰撞时,两个粒子将生成可以被探测器接收到的γ射线)的证据,但目前没有任何发现。

        2010年10月,宇宙学家表示,他们已经在银河核心深处发现与暗物质粒子有关的最令人信服的证据。该地的这种神秘物质相撞在一起产生伽马射线的次数,比天空中的其他临近区域更频繁。跟普通物质一样,暗物质具有引力,几十亿颗恒星正是在它们的帮助下聚集到星系里。但是这种物质很难与普通物质发生互动,人们看不到它。微中子是唯一一种曾在实验室里发现的暗物质粒子,但是它们几乎是零质量,而且在暗物质的宇宙能量部分里仅占很小比例。天体物理学家认为,剩下的很大一部分是由弱相互作用大质量粒子(WIMP)构成,这种粒子的能量大约比质子多10到1000倍。如果两个暗物质粒子撞在一起,它们就会彼此摧毁对方,产生伽马射线。该科研组在银河核心处一个直径100光年的区域收集到的数据里发现这些信号。霍普解释说,他们之所以会关注这个区域,是因为它是暗物质最喜欢的聚集地,银河这个区域的暗物质密度,是银河边缘的10万倍。简而言之,银河核心就是一个暗物质大量聚集在一起,经常相撞的地方。

(图6:银河核心深处神秘物质相撞在一起产生的伽马射线)

        2010年11月,借助哈勃空间望远镜和宇宙引力透镜效应,科学家们日前成功地获取了一个巨型星系团中暗物质迄今最精确的分布图。当大量暗物质聚集,就像常规物质组成的星系团中会包括数百甚至数千的星系一样,聚集的暗物质会产生巨大的引力作用,使其背后遥远星系发出的光线在经过其附近时发生弯曲,从而形成类似透镜的效应。地球上的天文学家已经拍摄到多幅同一个星系在引力中心四周形成多幅图像和假象的现象,这称为“引力透镜效应”。 这是暗物质存在的直观证据,当遥远星系发出的光途经某个星系团附近时,光线就会因星系团引力偏折,这时的星系团就好似一个透镜,朝这个方向望去就会看到巨大的光弧甚至同一个星系的几个不同镜像。

(图7:图中的蓝色区域就是科学家们在哈勃望远镜的图像上叠加出的暗物质分布图)

 

我国科学家挑战现代物理学“两朵乌云”

 

        暗物质和暗能量被称为21世纪现代物理学和天文学晴朗天空中的“两朵乌云”,揭开暗物质、暗能量之谜,将是人类认识宇宙的又一次重大飞跃,可能导致一场新的物理学革命。2010年3月18日,国家“973”计划项目“暗物质、暗能量的理论研究及实验预研”在京启动。这标志着中国科学家将向揭开“两朵乌云”之谜发起挑战。

        “随着越来越多和越来越精确的宇宙学数据的获得,暗物质、暗能量存在的证据变得越来越清楚。而伴随着一系列更高精度的天文学观测实验的实施,预示着宇宙学研究的黄金时代已经开启。”项目首席科学家、中科院院士、中科院理论物理所所长吴岳良说。

        在实验方面,中科院紫金山天文台利用先进薄电离量能器(ATIC)探测器发现高能电子能谱的“超”,可能与暗物质湮灭有关,结果发表在2008年11月20日的英国《自然》杂志上,并入选美国物理协会和欧洲物理协会各自评选的2008年度世界物理学领域重大研究进展;中科院高能物理所多位实验物理学家参与了意大利DAMA实验组对暗物质的长期探测,报道了有关暗物质粒子的可能信号;上海交通大学在暗物质直接探测的XENON探测技术方面已有基础;清华大学在低本底、低能量阈高纯锗探测器方面开展了长期研究。

        在理论方面,中科院理论物理所、中科院高能物理所、中科院国家天文台、北京大学、清华大学、中国科技大学、复旦大学等单位的研究人员提出了解释暗物质和暗能量的理论模型和机制,做出了具有国际影响的工作。

        据吴岳良介绍,该“973”计划项目课题设置为5个,分别是暗物质的理论研究及相关新物理唯象、暗物质的空间探测实验研究、暗物质的地下探测的前沿技术预研、暗物质吨级液氙探测器的预研和暗能量的理论研究及地面探测方案研究。

        该项目的总体学术思路是:发挥理论先行和实验预研的作用,强调理论研究与实验探测设计相结合和多学科交叉融合的优势,从地下、地面到空间多种手段互为补充,构成有机整体,为开展对暗物质的间接和直接探测提供可靠的物理依据和可行的实验设计及有效的探测方案,推进我国空间卫星的天体粒子物理实验平台、四川锦屏国家深部地下实验室,南极冰穹国家地面天文望远镜观测实验基地的建设。

         “项目集中了国内在暗物质和暗能量领域的主要优势单位,组成了一个跨学科的研究队伍。”吴岳良说,研究队伍有开展暗物质和暗能量理论研究需要具备的坚实理论基础,包括粒子物理理论、引力理论、大统一理论(如超弦理论)等基本理论;有加速器、探测器建造和相关技术及国际合作的丰富经验;有长期相关实验组的研究并取得重要成果,积累了丰富的经验。

 

中国暗物质研究基地

 

        中国首个极深地下实验室——“中国锦屏地下实验室”于2010年12月12日在四川雅砻江锦屏水电站揭牌并投入使用,锦屏地下实验室垂直岩石覆盖达2400米,是目前世界岩石覆盖最深的实验室。它的建成标志着中国已经拥有了世界一流的洁净的低辐射研究平台,能够自主开展像暗物质探测这样的国际最前沿的基础研究课题。目前,清华大学实验组的暗物质探测器已经率先进入实验室,并启动探测工作,而2011年上海交通大学等研究团队也将进入这里开展暗物质的探测研究。

(图8:中国暗物质研究基地。)

        在建设二滩水电站过程中,四川锦屏山底曾修建了18公里可以通行汽车的隧道,上面是2500多米厚的山体岩石。这些平常的隧道,在那些苦苦寻找实验环境的宇宙学研究者眼里,却成了“香饽饽”。上海交大2010年2月刚成立的粒子物理宇宙学研究所,就相中了锦屏山隧道作为地下实验室的建设地点。这里将成为研究所成立后首个实验的开展地,专门“搜捕”暗物质。目前这里是世界上最优越的探测暗物质的环境。

    之所以称之为最优,据交大物理系主任、粒子物理宇宙学研究所所长季向东介绍,该实验室利用的是当地建水电站时修的地下隧道,在其侧面开挖长40米,宽、高各为6米的空间。因而与国外一些“脱胎”于矿井的地下实验室相比,使用更为便利,不必坐着电梯上上下下,乘坐汽车就能“入地”。而埋深2500米的隧道,更是难得,因为埋得越深,宇宙射线的干扰就越少。

        交大粒子物理宇宙学研究所特别研究员倪凯旋是暗物质探测国际合作项目XENON的交大组负责人,也是该实验数据分析组组长。在去年的一年里,他曾在意大利著名的Gran Sasso实验室工作。Gran Sasso实验室建在地下1400米,也是基于地下隧道建造的,在全球的地下实验室中,空间是最大的。那里,有十几个大大小小的实验同时在进行,有探测暗物质的,也有探测中微子等的。

        如何“网”住暗物质?科学家们也想了很多办法。最初的办法是天文观测法,但是,却无法解答“暗物质是什么”。后来,人们又采取间接探测和直接探测的办法。前者,是探测暗物质相互碰撞产生的普通物质粒子信号,一般通过地面或太空望远镜探测;后者,则是用原子核与暗物质碰撞,探测碰撞产生的信号。而在地面上,因为宇宙射线众多,这些信号会对直接探测产生干扰,影响其鉴别能力。因此,地下实验室可以帮助探测器“挡”去干扰,让其“静心”工作。

        至于探测到暗物质之后能派上什么用场,这对科研人员来说,仍是未知数。季向东说:“粒子物理探求的是物质最深层次的奥秘,对未来的生活会发生怎样的影响,我们现在还不得而知。就像电被发明时,人们尚无法想象后来的电视、电脑。但无论如何,每一个科学发现都使人们对物质世界的认识更进一步,这是最了不起的事。”

 

暗物质候选者

 

        长久以来,最被看好的暗物质仅仅是假说中的基本暗性粒子,它具有寿命长、温度低、无碰撞的特殊特性。温度低意味着在脱耦时它们是非相对论性粒子,只有这样它们才能在引力作用下迅速成团。寿命长意味着它的寿命必须与现今宇宙年龄相当,甚至更长。由于成团过程发生在比哈勃视界(宇宙年龄与光速的乘积)小的范围内,而且这一视界相对现在的宇宙而言非常的小,因此最先形成的暗物质团块或者暗物质晕比银河系的尺度要小得多,质量也要小得多。随着宇宙的膨胀和哈勃视界的增大,这些最先形成的小暗物质晕会合并形成较大尺度的结构,而这些较大尺度的结构之后又会合并形成更大尺度的结构。其结果就是形成不同体积和质量的结构体系,定性上这是与观测相一致的。相反的,对于相对论性粒子,例如中微子,在物质引力成团的时期由于其运动速度过快而无法形成我们观测到的结构。因此中微子对暗物质质量密度的贡献是可以忽略的。在太阳中微子实验中对中微子质量的测量结果也支持了这一点。无碰撞指的是暗物质粒子(与暗物质和普通物质)的相互作用截面在暗物质晕中小的可以忽略不计。这些粒子仅仅依靠引力来束缚住对方,并且在暗物质晕中以一个较宽的轨道偏心律谱无阻碍的作轨道运动。

        低温无碰撞暗物质(CCDM)被看好有几方面的原因。第一,CCDM的结构形成数值模拟结果与观测相一致。第二,作为一个特殊的亚类,弱相互作用大质量粒子(WIMP)可以很好的解释其在宇宙中的丰度。如果粒子间相互作用很弱,那么在宇宙最初的万亿分之一秒它们是处于热平衡的。之后,由于湮灭它们开始脱离平衡。根据其相互作用截面估计,这些物质的能量密度大约占了宇宙总能量密度的20-30%。这与观测相符。CCDM被看好的第三个原因是,在一些理论模型中预言了一些非常有吸引力的候选粒子。

        其中一个候选者就是中性子(neutralino),一种超对称模型中提出的粒子。超对称理论是超引力和超弦理论的基础,它要求每一个已知的费米子都要有一个伴随的玻色子(尚未观测到),同时每一个玻色子也要有一个伴随的费米子。如果超对称依然保持到今天,伴随粒子将都具有相同质量。但是由于在宇宙的早期超对称出现了自发的破缺,于是今天伴随粒子的质量也出现了变化。而且,大部分超对称伴随粒子是不稳定的,在超对称出现破缺之后不久就发生了衰变。但是,有一种最轻的伴随粒子(质量在100GeV的数量级)由于其自身的对称性避免了衰变的发生。在最简单模型中,这些粒子是呈电中性且弱相互作用的--是WIMP的理想候选者。如果暗物质是由中性子组成的,那么当地球穿过太阳附近的暗物质时,地下的探测器就能探测到这些粒子。另外有一点必须注意,这一探测并不能说明暗物质主要就是由WIMP构成的。现在的实验还无法确定WIMP究竟是占了暗物质的大部分还是仅仅只占一小部分。

        另一个候选者是轴子(axion),一种非常轻的中性粒子(其质量在1μeV的数量级上),它在大统一理论中起了重要的作用。轴子间通过极微小的力相互作用,由此它无法处于热平衡状态,因此不能很好的解释它在宇宙中的丰度。在宇宙中,轴子处于低温玻色子凝聚状态,现在已经建造了轴子探测器,探测工作也正在进行。

 

何处有大量暗物质

 

        茫茫宇宙中,恒星间相互作用,做着各种各样的规则的轨道运动,而有些运动我们却找不着其作用对应的物质。因此,人们设想,在宇宙中也许存着我们看不见的物质。

   现已知道,宇宙的大结构呈泡沫状,星系聚集成“星系长城”,即泡沫的连接纤维,而纤维之间是巨大的“宇宙空洞”,即大泡泡,直径达1~3亿光年。如果没有一种看不见的暗物质的附加引力“帮忙”,这么大的空洞是不能维持的,就像屋顶和桥梁的跨度过大不能支持一样。

      我们的宇宙尽管在膨胀,但高速运动中的个星系并不散开,如果仅有可见物质,它们的引力是不足以把各星系维持在一起的。

      我们知道,太阳系的质量,99.86%集中在太阳系的中心即太阳上,因此,离太阳近的行星受到太阳的引力,比离太阳远的行星大,因此,离太阳近的行星绕太阳运行的速度,比离太阳远的行星快,以便产生更大的离心加速度(离心力)来平衡较大的太阳引力。但在星系中心,虽然也集中了更多的恒星,还有黑洞,可是,离星系中心近的恒星的运动速度,并不比离得远的恒星的运动速度快。这说明星系的质量并不集中在星系中心,在星系的外围区域一定有大量暗物质存在。

        天体的亮度反应天体的质量。所以天文学家常常用星系的亮度来推算星系的质量,也可通过引力来推算星系的质量。可是,从引力推算出的银河系的质量,是从亮度推算的银河系质量的十倍以上,在外围区域甚至达五千倍。因而,在那里必然有大量暗物质存在。

 

暗物质分布的形状

 

        中央研究院天文及天文物理研究所博士后研究人员冈部信広博士(Dr. Nobuhiro Okabe),日前参与一组跨国团队,首度证实天文学界目前对暗物质的主流预测模型,这个模型描述暗物质在大质量星系团呈现近似椭圆的扁平状分布。该论文于2010年4月23日刊登于皇家天文学会月报(Monthly Notices of the Royal Astronomical Society)网站上。

        该研究团队运用Subaru 望远镜的主焦(点)相机(Subaru Telescope’s Prime Focus Camera,亦简称为Suprime-Cam)观察25个大质量星系团,藉由重力透镜来详细测量这些星系团的暗物质空间分布。星系团是研究暗物质分布的理想场域,因为它们含有成千上万的星系,且纳有大量的暗物质。研究者利用Suprime-Cam取得了大质量星系团的广角影像(这些星系团位于地球30亿光年以外的距离),并依这些影像来测量和分析暗物质之分布。

        此团队经过详细分析图像中的重力透镜效应,取得明确的证据显示暗物质在这些星系团的分布,平均来说,暗物质的分布呈现出非常扁平的形状,而非简单的球形轮廓。该扁平化程度相当大,其椭圆形的长轴与短轴比例相当于2:1。此发现创下壮举,首度成功展现天文学家利用重力透镜,直接侦测出暗物质分布的扁平化现象。研究结果同时显示,观察所得的扁平化程度与暗物质的主流理论结果一致。

(图9:Subaru Suprime-Cam在分析 A2390星系团 (距离地球27亿光年) 时所撷取到的超广角影像图。色调呈紫色处即为暗物质藉由许多遥远星系(通常距离地球约80亿光年左右)的重力透镜效应所推测的分布状况。较深紫色区域代表暗物质密度更高,并且可以见到暗物质的分布是沿西北-东南走向延伸。)

(图10:本图为运用重力透镜量测暗物质分布所得的图示。不同的色彩代表暗物质密度的不同,标示偏红代表密度越高。黑色椭圆显示背景星系的扭曲型态;遥远星系的位置有系统地被扭曲成黑色椭圆型,扭曲是由重力透镜效应所引起。(实际上,所有背景星系都有自己的形状和方向,因此平均了多个星系的形状,藉由重力透镜效应撷取其扭曲程度)。左右两图分别显示出「球形」和「椭圆形」的暗物质分布。不同的扭曲型态显示,确实可透过二维的透镜扭曲来测量暗物质分布。)

 

各类科学家的发现

 

        20世纪30年代,荷兰天体物理学家奥尔特指出:为了说明恒星的运动,需要假定在太阳附近存在着暗物质;同年代,茨维基从室女星系团诸星系的运动的观测中,也认为在星系团中存在着大量的暗物质;美国天文学家巴柯的理论分析也表明,在太阳附近,存在着与发光物质几乎同等数量看不见的物质。

    那么,太阳附近和银道面上的暗物质是些什么东西呢?天文学家认为,它们也许是一般光学望远镜观测不到的极暗弱的褐矮星或质量为木行星30~80倍的大行星。在大视场望远镜所拍摄的天空照片上已发现了暗于14星等,不到半个太阳质量的M型矮星。由于太阳位于银河系中心平面的附近,从探测到的M型矮星的数目可推算出,它们大概能提供银河系应有失踪质量的另一半。且每一颗M型星发光,有几万年。所以人们认为银河系中一定存在着许许多多的这些小恒星“燃烧”后的“尸体”,足以提供理论计算所需的全部暗物质。

    观测结果和理论分析均表明漩涡星系外围存在着大质量的暗晕。那么,暗晕中含有哪些看不见的物质呢?英国天文学家里斯认为可能有三种候选者:第一种就是上面所述的小质量恒星或大行星;第二种是很早以前由超大质量恒星坍缩而成的200万倍太阳质量左右的大质量黑洞;第三种是奇异粒子,如质量可能为20~49电子伏且与电子有联系的中微子,质量为105电子伏的轴子或目前科学家所赞成的各种大统一理论所允许和需求的粒子。

    欧洲核子研究中心的粒子物理学家伊里斯认为,星系晕及星系团中最佳的暗物质候选者是超对称理论所要求的S粒子。这种理论认为:每个已知粒子的基本粒子(如光子)必定存在着与其配对的粒子(如具有一定质量的光微子)。伊里斯推荐四种最佳暗物质候选者:光微子、希格斯微子、中微子和引力粒子。科学家还认为,这些粒子也是星系团之间广大宇宙空间中的冷的暗物质候选者。

    到现在,已有不少天文学家认为,宇宙中90%以上的物质是以“暗物质”的方式隐藏着。但暗物质到底是些什么东西至今还是一个谜,还待于人们去进一步探索。

    2006年1月6日报道,剑桥大学天文研究所的科学家们在历史上第一次成功确定了广泛分布在宇宙间的暗物质的部分物理性质。目前,从事此项研究的科学家们正准备在最近几周内将此项研究结果公开发表。

    天文学家们称,根据当前一些统计资料显示,我们平常看不见的暗物质很可能占有宇宙所有物质总量的95%。

    在本次这项研究中,科学家们借助强功率天文望远镜(包括架设在智利的甚大天文望远镜VLT --Very Large Telescope)对距离银河系不远的矮星系进行了共达23夜的研究,此后科学家们还通过约7000余次的计算得出结论称:在他们所观测的这些矮星系中,暗物质的含量是其它普通物质的400多倍。此外,这些矮星系中物质 粒子的运动速度可达每秒9公里,其温度可达10000℃。

    同时科学家们还观测到,暗物质与其它普通物质还有着巨大的差异,如:尽管观测目标的温度是如此之高,但是这样的高温却不会产生任何辐射。据领导此项研究的杰里-吉尔摩教授认为,暗物质微粒很有可能不是由质子和中子构成的。然而在此之前科学家们曾一贯认为,暗物质应该是由一些“冷”粒子构成的,这些粒子的运动速度也不会太高。

    暗物质研究专家们还表示,宇宙间最小的连续存在的暗物质片段大小也有1000光年,这样的暗物质片段质量约是太阳的30多倍。科学家们还在此次研究中确定出了暗物质微粒分布的密度,譬如,在地球上每立方厘米的空间如果能够容纳1023个物质粒子,那么对于暗物质来说这么大的空间只能容纳约三分之一的微粒。

      早在30年代,瑞士科学家弗里兹-茨维基就设想宇宙间存在着某种不为人所知的暗物质。他还指出,星系群中的发光物质如果只依靠自身的引力将各个星系保持联接在一起,那么它们的量就必须要再增加10倍。而用来弥补这个空缺的就是看不见的重力物质,即我们今天所说的暗物质。尽管暗物质在宇宙间的储藏量比其它普通物质高出许多,但有关暗物质的性质目前科学家们尚不能给予完整的表述。

 

China JIC Initiative©2010-2015;    网站:www.ccjc-beijing.com    浙ICP备17010497号-2
总部通讯地址:北京海淀区中关村南大街12号,中国农科院生物技术研究所,北京100081
e-mail:ccjc@caas.net.cn    联系电话:010-82106740(办公室);13718971494 (手机)